Return melted data for each token in a delimited file (including csv & tsv)
Source:R/melt_delim.R
melt_delim.Rd
This function has been superseded in readr and moved to the meltr package.
Usage
melt_delim(
file,
delim,
quote = "\"",
escape_backslash = FALSE,
escape_double = TRUE,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
comment = "",
trim_ws = FALSE,
skip = 0,
n_max = Inf,
progress = show_progress(),
skip_empty_rows = FALSE
)
melt_csv(
file,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
quote = "\"",
comment = "",
trim_ws = TRUE,
skip = 0,
n_max = Inf,
progress = show_progress(),
skip_empty_rows = FALSE
)
melt_csv2(
file,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
quote = "\"",
comment = "",
trim_ws = TRUE,
skip = 0,
n_max = Inf,
progress = show_progress(),
skip_empty_rows = FALSE
)
melt_tsv(
file,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
quote = "\"",
comment = "",
trim_ws = TRUE,
skip = 0,
n_max = Inf,
progress = show_progress(),
skip_empty_rows = FALSE
)
Arguments
- file
Either a path to a file, a connection, or literal data (either a single string or a raw vector).
Files ending in
.gz
,.bz2
,.xz
, or.zip
will be automatically uncompressed. Files starting withhttp://
,https://
,ftp://
, orftps://
will be automatically downloaded. Remote gz files can also be automatically downloaded and decompressed.Literal data is most useful for examples and tests. To be recognised as literal data, the input must be either wrapped with
I()
, be a string containing at least one new line, or be a vector containing at least one string with a new line.Using a value of
clipboard()
will read from the system clipboard.- delim
Single character used to separate fields within a record.
- quote
Single character used to quote strings.
- escape_backslash
Does the file use backslashes to escape special characters? This is more general than
escape_double
as backslashes can be used to escape the delimiter character, the quote character, or to add special characters like\\n
.- escape_double
Does the file escape quotes by doubling them? i.e. If this option is
TRUE
, the value""""
represents a single quote,\"
.- locale
The locale controls defaults that vary from place to place. The default locale is US-centric (like R), but you can use
locale()
to create your own locale that controls things like the default time zone, encoding, decimal mark, big mark, and day/month names.- na
Character vector of strings to interpret as missing values. Set this option to
character()
to indicate no missing values.- quoted_na
Should missing values inside quotes be treated as missing values (the default) or strings. This parameter is soft deprecated as of readr 2.0.0.
- comment
A string used to identify comments. Any text after the comment characters will be silently ignored.
- trim_ws
Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed from each field before parsing it?
- skip
Number of lines to skip before reading data. If
comment
is supplied any commented lines are ignored after skipping.- n_max
Maximum number of lines to read.
- progress
Display a progress bar? By default it will only display in an interactive session and not while knitting a document. The automatic progress bar can be disabled by setting option
readr.show_progress
toFALSE
.- skip_empty_rows
Should blank rows be ignored altogether? i.e. If this option is
TRUE
then blank rows will not be represented at all. If it isFALSE
then they will be represented byNA
values in all the columns.
Value
A tibble()
of four columns:
row
, the row that the token comes from in the original filecol
, the column that the token comes from in the original filedata_type
, the data type of the token, e.g."integer"
,"character"
,"date"
, guessed in a similar way to theguess_parser()
function.value
, the token itself as a character string, unchanged from its representation in the original file.
If there are parsing problems, a warning tells you
how many, and you can retrieve the details with problems()
.
Details
For certain non-rectangular data formats, it can be useful to parse the data into a melted format where each row represents a single token.
melt_csv()
and melt_tsv()
are special cases of the general
melt_delim()
. They're useful for reading the most common types of
flat file data, comma separated values and tab separated values,
respectively. melt_csv2()
uses ;
for the field separator and ,
for the
decimal point. This is common in some European countries.
See also
read_delim()
for the conventional way to read rectangular data
from delimited files.
Examples
# Input sources -------------------------------------------------------------
# Read from a path
melt_csv(readr_example("mtcars.csv"))
#> Warning: `melt_csv()` was deprecated in readr 2.0.0.
#> ℹ Please use `meltr::melt_csv()` instead
#> # A tibble: 363 × 4
#> row col data_type value
#> <dbl> <dbl> <chr> <chr>
#> 1 1 1 character mpg
#> 2 1 2 character cyl
#> 3 1 3 character disp
#> 4 1 4 character hp
#> 5 1 5 character drat
#> 6 1 6 character wt
#> 7 1 7 character qsec
#> 8 1 8 character vs
#> 9 1 9 character am
#> 10 1 10 character gear
#> # ℹ 353 more rows
melt_csv(readr_example("mtcars.csv.zip"))
#> # A tibble: 363 × 4
#> row col data_type value
#> <dbl> <dbl> <chr> <chr>
#> 1 1 1 character mpg
#> 2 1 2 character cyl
#> 3 1 3 character disp
#> 4 1 4 character hp
#> 5 1 5 character drat
#> 6 1 6 character wt
#> 7 1 7 character qsec
#> 8 1 8 character vs
#> 9 1 9 character am
#> 10 1 10 character gear
#> # ℹ 353 more rows
melt_csv(readr_example("mtcars.csv.bz2"))
#> # A tibble: 363 × 4
#> row col data_type value
#> <dbl> <dbl> <chr> <chr>
#> 1 1 1 character mpg
#> 2 1 2 character cyl
#> 3 1 3 character disp
#> 4 1 4 character hp
#> 5 1 5 character drat
#> 6 1 6 character wt
#> 7 1 7 character qsec
#> 8 1 8 character vs
#> 9 1 9 character am
#> 10 1 10 character gear
#> # ℹ 353 more rows
if (FALSE) {
melt_csv("https://github.com/tidyverse/readr/raw/main/inst/extdata/mtcars.csv")
}
# Or directly from a string (must contain a newline)
melt_csv("x,y\n1,2\n3,4")
#> # A tibble: 6 × 4
#> row col data_type value
#> <dbl> <dbl> <chr> <chr>
#> 1 1 1 character x
#> 2 1 2 character y
#> 3 2 1 integer 1
#> 4 2 2 integer 2
#> 5 3 1 integer 3
#> 6 3 2 integer 4
# To import empty cells as 'empty' rather than `NA`
melt_csv("x,y\n,NA,\"\",''", na = "NA")
#> # A tibble: 6 × 4
#> row col data_type value
#> <dbl> <dbl> <chr> <chr>
#> 1 1 1 character "x"
#> 2 1 2 character "y"
#> 3 2 1 empty ""
#> 4 2 2 missing NA
#> 5 2 3 empty ""
#> 6 2 4 character "''"
# File types ----------------------------------------------------------------
melt_csv("a,b\n1.0,2.0")
#> # A tibble: 4 × 4
#> row col data_type value
#> <dbl> <dbl> <chr> <chr>
#> 1 1 1 character a
#> 2 1 2 character b
#> 3 2 1 double 1.0
#> 4 2 2 double 2.0
melt_csv2("a;b\n1,0;2,0")
#> Warning: `melt_csv2()` was deprecated in readr 2.0.0.
#> ℹ Please use `meltr::melt_csv2()` instead
#> ℹ Using "','" as decimal and "'.'" as grouping mark. Use `read_delim()` for more control.
#> # A tibble: 4 × 4
#> row col data_type value
#> <dbl> <dbl> <chr> <chr>
#> 1 1 1 character a
#> 2 1 2 character b
#> 3 2 1 double 1,0
#> 4 2 2 double 2,0
melt_tsv("a\tb\n1.0\t2.0")
#> Warning: `melt_tsv()` was deprecated in readr 2.0.0.
#> ℹ Please use `meltr::melt_tsv()` instead
#> # A tibble: 4 × 4
#> row col data_type value
#> <dbl> <dbl> <chr> <chr>
#> 1 1 1 character a
#> 2 1 2 character b
#> 3 2 1 double 1.0
#> 4 2 2 double 2.0
melt_delim("a|b\n1.0|2.0", delim = "|")
#> Warning: `melt_delim()` was deprecated in readr 2.0.0.
#> ℹ Please use `meltr::melt_delim()` instead
#> # A tibble: 4 × 4
#> row col data_type value
#> <dbl> <dbl> <chr> <chr>
#> 1 1 1 character a
#> 2 1 2 character b
#> 3 2 1 double 1.0
#> 4 2 2 double 2.0