For certain non-rectangular data formats, it can be useful to parse the data into a melted format where each row represents a single token.
Usage
melt_delim_chunked(
file,
callback,
chunk_size = 10000,
delim,
quote = "\"",
escape_backslash = FALSE,
escape_double = TRUE,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
comment = "",
trim_ws = FALSE,
skip = 0,
progress = show_progress(),
skip_empty_rows = FALSE
)
melt_csv_chunked(
file,
callback,
chunk_size = 10000,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
quote = "\"",
comment = "",
trim_ws = TRUE,
skip = 0,
progress = show_progress(),
skip_empty_rows = FALSE
)
melt_csv2_chunked(
file,
callback,
chunk_size = 10000,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
quote = "\"",
comment = "",
trim_ws = TRUE,
skip = 0,
progress = show_progress(),
skip_empty_rows = FALSE
)
melt_tsv_chunked(
file,
callback,
chunk_size = 10000,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
quote = "\"",
comment = "",
trim_ws = TRUE,
skip = 0,
progress = show_progress(),
skip_empty_rows = FALSE
)
Arguments
- file
Either a path to a file, a connection, or literal data (either a single string or a raw vector).
Files ending in
.gz
,.bz2
,.xz
, or.zip
will be automatically uncompressed. Files starting withhttp://
,https://
,ftp://
, orftps://
will be automatically downloaded. Remote gz files can also be automatically downloaded and decompressed.Literal data is most useful for examples and tests. To be recognised as literal data, the input must be either wrapped with
I()
, be a string containing at least one new line, or be a vector containing at least one string with a new line.Using a value of
clipboard()
will read from the system clipboard.- callback
A callback function to call on each chunk
- chunk_size
The number of rows to include in each chunk
- delim
Single character used to separate fields within a record.
- quote
Single character used to quote strings.
- escape_backslash
Does the file use backslashes to escape special characters? This is more general than
escape_double
as backslashes can be used to escape the delimiter character, the quote character, or to add special characters like\\n
.- escape_double
Does the file escape quotes by doubling them? i.e. If this option is
TRUE
, the value""""
represents a single quote,\"
.- locale
The locale controls defaults that vary from place to place. The default locale is US-centric (like R), but you can use
locale()
to create your own locale that controls things like the default time zone, encoding, decimal mark, big mark, and day/month names.- na
Character vector of strings to interpret as missing values. Set this option to
character()
to indicate no missing values.- quoted_na
Should missing values inside quotes be treated as missing values (the default) or strings. This parameter is soft deprecated as of readr 2.0.0.
- comment
A string used to identify comments. Any text after the comment characters will be silently ignored.
- trim_ws
Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed from each field before parsing it?
- skip
Number of lines to skip before reading data. If
comment
is supplied any commented lines are ignored after skipping.- progress
Display a progress bar? By default it will only display in an interactive session and not while knitting a document. The automatic progress bar can be disabled by setting option
readr.show_progress
toFALSE
.- skip_empty_rows
Should blank rows be ignored altogether? i.e. If this option is
TRUE
then blank rows will not be represented at all. If it isFALSE
then they will be represented byNA
values in all the columns.
Details
melt_delim_chunked()
and the specialisations melt_csv_chunked()
,
melt_csv2_chunked()
and melt_tsv_chunked()
read files by a chunk of rows
at a time, executing a given function on one chunk before reading the next.
See also
Other chunked:
callback
,
read_delim_chunked()
,
read_lines_chunked()
Examples
# Cars with 3 gears
f <- function(x, pos) subset(x, data_type == "integer")
melt_csv_chunked(readr_example("mtcars.csv"), DataFrameCallback$new(f), chunk_size = 5)
#> # A tibble: 218 × 4
#> row col data_type value
#> <dbl> <dbl> <chr> <chr>
#> 1 2 1 integer 21
#> 2 2 2 integer 6
#> 3 2 3 integer 160
#> 4 2 4 integer 110
#> 5 2 8 integer 0
#> 6 2 9 integer 1
#> 7 2 10 integer 4
#> 8 2 11 integer 4
#> 9 3 1 integer 21
#> 10 3 2 integer 6
#> # ℹ 208 more rows